## A Shorter Model Theory

This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

## An Invitation to Model Theory

## A Course in Model Theory

This concise introduction to model theory begins with standard notions and takes the reader through to more advanced topics such as stability, simplicity and Hrushovski constructions. The authors introduce the classic results, as well as more recent developments in this vibrant area of mathematical logic. Concrete mathematical examples are included throughout to make the concepts easier to follow. The book also contains over 200 exercises, many with solutions, making the book a useful resource for graduate students as well as researchers.

## Introduction to Model Theory

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.

## A Guide to Classical and Modern Model Theory

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.

## Philosophy and Model Theory

Model theory is an important area of mathematical logic which has deep philosophical roots, many philosophical applications, and great philosophical interest in itself. The aim of this book is to introduce, organise, survey, and develop these connections between philosophy and model theory, for the benefit of philosophers and logicians alike.

## Mathematical Logic and Model Theory

Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

## Model Theory, Algebra, and Geometry

Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.

## Institution-independent Model Theory

This book develops model theory independently of any concrete logical system or structure, within the abstract category-theoretic framework of the so called â€˜institution theoryâ€™. The development includes most of the important methods and concepts of conventional concrete model theory at the abstract institution-independent level. Consequently it is easily applicable to a rather large diverse collection of logics from the mathematical and computer science practice.

## Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry: Volume 1

The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This first volume contains introductory texts on the model theory of valued fields, different approaches to non-Archimedean geometry, and motivic integration on algebraic varieties and non-Archimedean spaces.

## Finite and Algorithmic Model Theory

## Model Theory

## Model Theory

Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.

## Model Theoretic Methods in Finite Combinatorics

This volume contains the proceedings of the AMS-ASL Special Session on Model Theoretic Methods in Finite Combinatorics, held January 5-8, 2009, in Washington, DC. Over the last 20 years, various new connections between model theory and finite combinatorics emerged. The best known of these are in the area of 0-1 laws, but in recent years other very promising interactions between model theory and combinatorics have been developed in areas such as extremal combinatorics and graph limits, graph polynomials, homomorphism functions and related counting functions, and discrete algorithms, touching the boundaries of computer science and statistical physics. This volume highlights some of the main results, techniques, and research directions of the area. Topics covered in this volume include recent developments on 0-1 laws and their variations, counting functions defined by homomorphisms and graph polynomials and their relation to logic, recurrences and spectra, the logical complexity of graphs, algorithmic meta theorems based on logic, universal and homogeneous structures, and logical aspects of Ramsey theory.

## A Course in Model Theory

Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.

## A Guide to NIP Theories

## Model Theory and Modules

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.

## Finite Model Theory

Finite model theory has its origin in classical model theory, but owes its systematic development to research from complexity theory. The book presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed- point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. Other topics include DATALOG languages, quantifiers and oracles, 0-1 laws, and optimization and approximation problems. The book is written in such a way that the resp. parts on model theory and descriptive complexity theory may be read independently.

## Model Theory and the Philosophy of Mathematical Practice

Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations for mathematicians and philosophers. In this book, John T. Baldwin places the revolution in its historical context from the ancient Greeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impact of model theory on contemporary algebraic geometry, number theory, combinatorics, and differential equations. This comprehensive and detailed book will interest logicians and mathematicians as well as those working on the history and philosophy of mathematics.

## Model Theory and Applications

This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.